Orbit wants to create fuel stations in space

Since the dawn of the space age — the launch of the Sputnik I in 1957 — humans have sent over 15,000 satellites into orbit. Just over half are still functioning; the rest, after running out of fuel and ending their serviceable life, have either burned up in the atmosphere or are still orbiting as useless hunks of metal.

As such, they pose a threat to the International Space Station and to other satellites, with the European Space Agency estimating that over 640 “break-ups, explosions, collisions, or anomalous events resulting in fragmentation” have occurred to date.

That has created an aura of space junk around the planet, made up of 36,500 objects larger than 10 centimeters (3.94 inches) and a whopping 130 million fragments up to 1 centimeter (0.39 inches). Cleaning up this debris is costly and complicated, with several plans to do so but no tangible results yet.

One way to start tackling the problem would be to stop producing more junk — by refueling satellites rather than decommissioning them once they run out of power.

“Right now you can’t refuel a satellite on orbit,” says Daniel Faber, CEO of Orbit Fab. But his Colorado-based company wants to change that.

“When satellites run out of fuel, you can’t keep them in the right place in orbit and they become dangerous debris, floating around at very high velocities and risking collisions,” Faber explains. “But also, the lack of fuel creates a whole paradigm where people design their spacecraft missions around moving as little as possible.

“That means that we can’t have tow trucks in orbit to get rid of any debris that happens to be left. We can’t have repairs and maintenance, we can’t upgrade anything. We can’t inspect anything if it breaks. There are so many things we can’t do and we operate in a very constrained way. That’s the solution we’re trying to deliver.”

Space surgery

The concept of refueling and servicing satellites in orbit was pioneered by NASA in 2007, when — in collaboration with DARPA (the research arm of the US Department of Defense) and Boeing — it launched Orbital Express, a mission involving two purpose-built satellites that successfully docked and exchanged fuel. Later, NASA worked on the Robotic Refueling Mission (RRM), which further explored the challenges of refueling existing satellites.

Now the agency is working on OSAM-1, which was scheduled to launch in 2026 and will attempt to grab and refuel Landsat-7, an Earth-observation satellite that has run out of gas.

“This is a mission to refuel a satellite that wasn’t prepared to be refueled,” says Faber. “So they effectively have to do surgery on the satellite, cutting into it to get access to the fuel pipes. This allows for impressive satellite repair capability, but it comes at a price.” NASA said that OSAM-1 will cost about $2 billion in total.

Orbit Fab has no plans to address the existing fleet of satellites. Instead, it wants to focus on those that have yet to launch, and equip them with a standardized port — called RAFTI, for Rapid Attachable Fluid Transfer Interface — which would dramatically simplify the refueling operation, keeping the price tag down.

“What we’re looking at doing is creating a low-cost architecture,” says Faber. “There’s no commercially available fuel port for refueling a satellite in orbit yet. For all the big aspirations we have about a bustling space economy, really, what we’re working on is the gas cap — we are a gas cap company.”

A rendering of the future Orbit Fab Shuttle, which will deliver fuel to satellites in need directly on orbit.

Read the full story at Orbit Fab wants to create ‘gas stations in space’ | CNN