Data is the new oil: How Shell has become a data-driven and AI-enabled business

What does it take to become a more data-driven business? This is a question that every organization, not just tech companies, needs to grapple with, or they will falter in the future. One of my customers is Shell – a company that is doing a great job of becoming more data-driven. One of the driving forces to make the company more data-driven is Dan Jeavons, Data Science Manager at the global energy and petrochemical company. With this article (and related videos), I want to share the learning experiences they had as they prioritized data-driven operations.

Why must organizations become data-driven?

Does growing 30 percent annually sound appealing? According to Forrester, that’s what data-driven organizations can expect to achieve in addition to being profitable and acquiring and retaining new customers. Most organizations realize data should be central to decision-making; however, leaping from knowing to doing isn’t as straightforward.

Here are some best practices from Shell and other thoughts on how best to transition to a data-driven business.

Think strategically about data

The starting point for any data strategy must be to examine your business challenges—what's your business strategy, overall business goals, your biggest challenges, and unanswered questions.

Before jumping into investing in data infrastructure and data-driven decisions, take a step back and determine how data can become relevant to the strategy of the business, this will help you to determine what data you need.

At Shell, Jeavons explained the value of a two-speed approach. "It's very easy to think about culture and standards and technologies and try to get that all right, but at the same time, we have to make it matter to the business. What we try to do is to think about minimal viable products that are going to have a significant business impact immediately and use that to inform the KPIs that really matter to the business. Then, line up to that, which data really matters and how to invest in data quality, data standards, and technology to support doing this at scale."

It's important to review the data you have access to and determine how you will acquire data diversity, and what new sets of data must be acquired to solve your particular business challenges.

Learn from tech companies

Shell, and the entire oil and gas industry, has been incredibly data-intensive for a very long time. However, with the cloud, digitalization, and new technologies emerging, the value and importance of data have gone up.

Jeavons shared, “What we’ve been trying to think through is how do we use data enterprise-wide. We recognize that some of the skills that cloud-based technology companies have developed and the way in which they think of data are quite different than the way we’ve thought about it historically, so we want to learn from them.”

Jeavons encourages organizations to leverage the best practices and learn from what’s going on in the market to bring expertise to your organization.

Data technology and discipline

Once you have determined data sources and know where to get the data you need, you must look at the technology and some of the tools to help determine where to store the data, how to analyze it, and turn it into insights. Technology is another key enabler to becoming a more data-driven business.

Jeavon explained how Shell is disciplined about the data the company collects and stores, and they "learned that when you start down this road, it's very easy to get tempted to go after lots of data and then look for a problem. Our experience is that if you put all the data in one place, it's harder to sift through."

Shell built a phenomenal data set—likely the largest curated set of data on the planet Jevon asserts. “At the same time, we’re focused on not pulling all sets of data, but only sets of data that will drive business,” he said.

Data is an asset but also a potential liability. It's important for organizations to only aggregate and integrate the data that is known to be of value, and that can be controlled. Your organization needs to be clear on why you're collecting data and the benefit you will drive from it. How can you envision that data being used in the future? How are you going to control access to that data in such a way that you deal with it in a secure, reliable, and well-managed fashion? When someone gains access to that data, how will they know what they're looking at?

Read the full article on Forbes here.

For more on AI and technology trends, see Bernard Marr’s book "Artificial Intelligence in Practice: How 50 Companies Used AI" and "Machine Learning To Solve Problems" and his forthcoming book "Tech Trends in Practice: The 25 Technologies That Are Driving The 4Th Industrial Revolution", available to pre-order now.